Schizophrenia is a mental disorder that usually occurs in
late adolescence or in early adulthood usually characterized by delusions,
hallucinations, and other cognitive difficulties, schizophrenia can often be a
lifelong struggle.
As a complex combination of the genetic, neurodevelopmental,
and environmental components, schizophrenia is one of the most difficult human
disorders to be studied at the molecular level. There is a countless
combination of biochemical and environmental links that leads to intricate webs
of molecular interactions, which are not specific to the brain, hampering the
identification of not only the causes and consequences of schizophrenia but
also the discovery of biomarkers.
The Proteomic profiling studies have indicated that the
oligodendrocyte dysfunction plays a key role in schizophrenia which consists of
transcriptomic findings.
Biomarkers are a biologic feature that can be used to
measure the presence or progress of a disease or the effects of treatment.
Biomarkers may be in any form of genes, proteins and other
molecules, or morphological characteristics. Depending on the information that
is provided, biomarkers may be used in diagnostics as the prediction tools in
the field of subclinical markers, risk or vulnerability markers, or as diseases
signatures like the disease markers, stage or progression markers.
Even though the pathophysiology of schizophrenia remains
unclear, there is an increasing body of evidence that several molecular
pathways are involved. Most findings point to the direction of malfunctioning
of the glutamate pathway.
Proteomics as a biomarker for the exploration of mental disorders:
The proteome is the entire set of proteins produced or
modified by an organism and varies with time, biological requirements, stress,
and other environmental factors. Proteomics refers to a large-scale and global
analysis of the proteins in a system, at a specific point in time under a
determined condition. Proteomics aims to obtain a more global and integrated
view of biology by studying all the proteins of a cell rather than each one
individually. Hence the protein profiling may better reflect dynamic
pathophysiological processes.
Meta-analyses of several linkage studies, correlations with
some chromosomal regions, however, they do not approach the acceptable
genome-wide significance. While there has been a successful mapping of genes for
monogenic or Mendelian disorders, linkage studies are inadequate for complex
multi-factorial disorders like schizophrenia.
The development of high-throughput technologies of proteomic
analysis has introduced a new era of biomarker discovery. For complex,
multifactorial disorders, ‘molecular fingerprinting’ via the identification and
characterization of biomarker profiles has enabled greater diagnostic
resolution between closely related disease phenotypes. For psychiatric disorders,
profiling allows for the generation of predictive models regardless of the
disease causes, which generally remain largely unknown. Furthermore, it holds
promise not only for predicting the onset of a disorder but also its course and
outcome.